Detecting Stress in Spoken English using Decision Trees and Support Vector Machines
نویسندگان
چکیده
This paper describes an approach to the detection of stress in spoken New Zealand English. After identifying the vowel segments of the speech signal, the approach extracts two different sets of features — prosodic features and vowel quality features — from the vowel segments. These features are then normalised and scaled to obtain speaker independent feature values that can be used to classify each vowel segment as stressed or unstressed. We used Decision Trees (C4.5) and Support Vector Machines (LIBSVM) to learn stress-detecting classifiers with various combinations of the features. The approach was evaluated on 60 adult female utterances with 703 vowels and a maximum accuracy of 84.72% was achieved. The results showed that a combination of features derived from duration and amplitude achieved the best performance but the vowel quality features also achieved quite reasonable results.
منابع مشابه
Towards Automatic Scoring of Non-Native Spontaneous Speech
This paper investigates the feasibility of automated scoring of spoken English proficiency of non-native speakers. Unlike existing automated assessments of spoken English, our data consists of spontaneous spoken responses to complex test items. We perform both a quantitative and a qualitative analysis of these features using two different machine learning approaches. (1) We use support vector m...
متن کاملA Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels
The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...
متن کاملکاربرد الگوریتمهای دادهکاوی در تفکیک منابع رسوبی حوزۀ آبخیز نوده گناباد
Introduction: Reduction of sediment supply requires the implementation of soil conservation and sediment control programs in the form of watershed management plans. Sediment control programs require identifying the relative importance of sediment sources, their quantitative ascription and identification of critical areas within the watersheds. The sediment source ascription is involves two...
متن کاملFault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملSentiment Analysis Using Weka
Online social networks usage are pervasive now a days. Mining the text present in online social networks will be useful for predictive analytic. Predicting information from unstructured data present in the social networks is a challenging research problem. Extracting, identifying or otherwise characterizing the sentiment content of the text unit using statistics and machine learning methods are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004